Nuprl Lemma : free-dist-lattice-hom-unique

T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
g,h:Hom(free-dist-lattice(T; eq);L).
  ((f (g x.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
   (f (h x.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
   (g h ∈ Hom(free-dist-lattice(T; eq);L)))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) deq: EqDecider(T) compose: g all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) compose: g
Lemmas referenced :  free-dist-lattice-hom-unique2 equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf compose_wf free-dist-lattice_wf free-dl-inc_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache functionEquality cumulativity applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality setElimination rename equalityUniverse levelHypothesis equalityTransitivity equalitySymmetry

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f:T  {}\mrightarrow{}  Point(L).  \mforall{}g,h:Hom(free-dist-lattice(T;  eq);L).
    ((f  =  (g  o  (\mlambda{}x.free-dl-inc(x))))  {}\mRightarrow{}  (f  =  (h  o  (\mlambda{}x.free-dl-inc(x))))  {}\mRightarrow{}  (g  =  h))



Date html generated: 2016_05_18-AM-11_32_44
Last ObjectModification: 2015_12_28-PM-01_59_45

Theory : lattices


Home Index