Nuprl Lemma : free-dist-lattice-hom-unique2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[g,h:Hom(free-dist-lattice(T; eq);L)].
  h ∈ Hom(free-dist-lattice(T; eq);L) supposing ∀x:T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(L))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] top: Top guard: {T} bdd-lattice: BoundedLattice cand: c∧ B implies:  Q all: x:A. B[x] true: True squash: T iff: ⇐⇒ Q rev_implies:  Q compose: g
Lemmas referenced :  uall_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf all_wf free-dl-inc_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf deq_wf free-dl-point free-dl-basis bdd-distributive-lattice-subtype-bdd-lattice deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 lattice-hom-fset-join subtype_rel_transitivity bdd-lattice_wf fset-image_wf lattice-fset-meet_wf decidable__equal_free-dl lattice-fset-join_wf squash_wf decidable_wf decidable-equal-deq true_wf iff_weakening_equal fset-image-compose lattice-hom-fset-meet
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination hypothesis extract_by_obid isectElimination cumulativity hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination functionExtensionality equalityTransitivity equalitySymmetry isect_memberEquality axiomEquality voidElimination voidEquality hyp_replacement applyLambdaEquality setEquality independent_pairFormation independent_functionElimination lambdaFormation dependent_functionElimination natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[g,h:Hom(free-dist-lattice(T;  eq);L)].
    g  =  h  supposing  \mforall{}x:T.  ((g  free-dl-inc(x))  =  (h  free-dl-inc(x)))



Date html generated: 2017_10_05-AM-00_36_24
Last ObjectModification: 2017_07_28-AM-09_14_56

Theory : lattices


Home Index