Nuprl Lemma : free-dist-lattice-hom-unique2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
∀[g,h:Hom(free-dist-lattice(T; eq);L)].
  g = h ∈ Hom(free-dist-lattice(T; eq);L) supposing ∀x:T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(L))
Proof
Definitions occuring in Statement : 
free-dl-inc: free-dl-inc(x)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bounded-lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
lattice-hom: Hom(l1;l2)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
guard: {T}
, 
bdd-lattice: BoundedLattice
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
compose: f o g
Lemmas referenced : 
uall_wf, 
lattice-point_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
all_wf, 
free-dl-inc_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
deq_wf, 
free-dl-point, 
free-dl-basis, 
bdd-distributive-lattice-subtype-bdd-lattice, 
deq-fset_wf, 
fset_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2, 
lattice-hom-fset-join, 
subtype_rel_transitivity, 
bdd-lattice_wf, 
fset-image_wf, 
lattice-fset-meet_wf, 
decidable__equal_free-dl, 
lattice-fset-join_wf, 
squash_wf, 
decidable_wf, 
decidable-equal-deq, 
true_wf, 
iff_weakening_equal, 
fset-image-compose, 
lattice-hom-fset-meet
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
independent_pairFormation, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[g,h:Hom(free-dist-lattice(T;  eq);L)].
    g  =  h  supposing  \mforall{}x:T.  ((g  free-dl-inc(x))  =  (h  free-dl-inc(x)))
Date html generated:
2017_10_05-AM-00_36_24
Last ObjectModification:
2017_07_28-AM-09_14_56
Theory : lattices
Home
Index