Nuprl Lemma : fset-image-compose

[T,A,B:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[eqb:EqDecider(B)]. ∀[f:T ⟶ A]. ∀[g:A ⟶ B]. ∀[s:fset(T)].
  (g"(f"(s)) f"(s) ∈ fset(B))


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset: fset(T) deq: EqDecider(T) compose: g uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q false: False implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] squash: T not: ¬A compose: g cand: c∧ B true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-image_wf compose_wf decidable__fset-member fset-member_witness fset-member_wf fset_wf deq_wf squash_wf exists_wf equal_wf true_wf iff_weakening_equal member-fset-image-iff iff_transitivity iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity functionExtensionality applyEquality hypothesis productElimination independent_isectElimination independent_pairFormation because_Cache dependent_functionElimination unionElimination voidElimination independent_functionElimination sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality lambdaEquality productEquality imageElimination dependent_pairFormation natural_numberEquality imageMemberEquality baseClosed universeEquality lambdaFormation promote_hyp existsFunctionality andLevelFunctionality

Latex:
\mforall{}[T,A,B:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqb:EqDecider(B)].  \mforall{}[f:T  {}\mrightarrow{}  A].
\mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[s:fset(T)].
    (g"(f"(s))  =  g  o  f"(s))



Date html generated: 2017_04_17-AM-09_21_07
Last ObjectModification: 2017_02_27-PM-05_24_16

Theory : finite!sets


Home Index