Nuprl Lemma : fset-image-compose
∀[T,A,B:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[eqb:EqDecider(B)]. ∀[f:T ⟶ A]. ∀[g:A ⟶ B]. ∀[s:fset(T)].
  (g"(f"(s)) = g o f"(s) ∈ fset(B))
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
not: ¬A
, 
compose: f o g
, 
cand: A c∧ B
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset-extensionality, 
fset-image_wf, 
compose_wf, 
decidable__fset-member, 
fset-member_witness, 
fset-member_wf, 
fset_wf, 
deq_wf, 
squash_wf, 
exists_wf, 
equal_wf, 
true_wf, 
iff_weakening_equal, 
member-fset-image-iff, 
iff_transitivity, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
lambdaEquality, 
productEquality, 
imageElimination, 
dependent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
lambdaFormation, 
promote_hyp, 
existsFunctionality, 
andLevelFunctionality
Latex:
\mforall{}[T,A,B:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqb:EqDecider(B)].  \mforall{}[f:T  {}\mrightarrow{}  A].
\mforall{}[g:A  {}\mrightarrow{}  B].  \mforall{}[s:fset(T)].
    (g"(f"(s))  =  g  o  f"(s))
Date html generated:
2017_04_17-AM-09_21_07
Last ObjectModification:
2017_02_27-PM-05_24_16
Theory : finite!sets
Home
Index