Nuprl Lemma : free-dl-basis

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-dist-lattice(T; eq))].
  (x \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a top: Top all: x:A. B[x] implies:  Q uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) rev_uimplies: rev_uimplies(P;Q) squash: T not: ¬A false: False exists: x:A. B[x] cand: c∧ B guard: {T} lattice-point: Point(l) record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt fset-singleton: {x} cons: [a b] sq_stable: SqStable(P) fset-member: a ∈ s assert: b deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: lattice-fset-join: \/(s) lattice-0: 0 fset-add: fset-add(eq;x;s) true: True fset-ac-lub: fset-ac-lub(eq;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] or: P ∨ Q decidable: Dec(P) f-proper-subset: xs ⊆≠ ys order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf free-dl-point fset-antichain-singleton fset-singleton_wf fset_wf assert_wf fset-antichain_wf deq-fset_wf strong-subtype-deq-subtype strong-subtype-set2 lattice-fset-join-is-lub bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf fset-member_wf member-fset-image-iff free-dl-le fset-all-iff bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_of_bnot member-fset-singleton not_wf assert_witness assert-fset-null fset-filter-is-empty assert-deq-f-subset f-subset_weakening lattice-fset-join_wf decidable__equal_free-dl subtype_rel_self fset-ac-le-implies2 sq_stable__fset-member set_wf fset-induction squash_wf exists_wf sq_stable__all sq_stable__squash empty-fset_wf fset-add_wf fset-union_wf true_wf lattice-fset-join-union iff_weakening_equal free-dl-join member-fset-minimals f-proper-subset-dec_wf member-fset-union member-fset-add lattice-fset-join-singleton and_wf assert-fset-antichain deq-implies lattice-le-order bdd-distributive-lattice-subtype-lattice lattice-fset-meet-free-dl-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality voidElimination voidEquality lambdaFormation dependent_set_memberEquality setElimination rename setEquality equalityTransitivity equalitySymmetry productElimination dependent_functionElimination independent_functionElimination functionEquality functionExtensionality imageElimination hyp_replacement applyLambdaEquality dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed natural_numberEquality unionElimination inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))



Date html generated: 2017_10_05-AM-00_36_16
Last ObjectModification: 2017_07_28-AM-09_14_53

Theory : lattices


Home Index