Nuprl Lemma : sq_stable__fset-member

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[s:fset(T)].  SqStable(a ∈ s)


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T prop:
Lemmas referenced :  squash_wf fset-member_wf fset-member_witness fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination hypothesis extract_by_obid isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[s:fset(T)].    SqStable(a  \mmember{}  s)



Date html generated: 2017_02_20-AM-10_48_40
Last ObjectModification: 2017_02_02-PM-07_20_04

Theory : finite!sets


Home Index