Nuprl Lemma : deq-implies

[T:Type]. (EqDecider(T)  {∀x,y:T.  Dec(x y ∈ T)})


Proof




Definitions occuring in Statement :  deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} all: x:A. B[x] member: t ∈ T deq: EqDecider(T) decidable: Dec(P) not: ¬A or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb false: False iff: ⇐⇒ Q subtype_rel: A ⊆B rev_implies:  Q true: True
Lemmas referenced :  deq_wf bool_wf eqtt_to_assert iff_wf equal_wf true_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf it_wf equal_subtype equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction hypothesisEquality cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesis universeEquality setElimination dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry applyEquality functionExtensionality unionElimination equalityElimination productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp instantiate because_Cache voidElimination inlEquality intEquality natural_numberEquality baseClosed functionEquality inrEquality

Latex:
\mforall{}[T:Type].  (EqDecider(T)  {}\mRightarrow{}  \{\mforall{}x,y:T.    Dec(x  =  y)\})



Date html generated: 2017_04_14-AM-07_39_08
Last ObjectModification: 2017_02_27-PM-03_10_45

Theory : equality!deciders


Home Index