Nuprl Lemma : fset-induction

[T:Type]
  ∀eq:EqDecider(T)
    ∀[P:fset(T) ⟶ ℙ]
      ((∀s:fset(T). SqStable(P[s]))
       P[{}]
       (∀s:fset(T). ∀x:T.  (P[s]  P[fset-add(eq;x;s)] supposing ¬x ∈ s))
       {∀s:fset(T). P[s]})


Proof




Definitions occuring in Statement :  empty-fset: {} fset-add: fset-add(eq;x;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a nat: so_lambda: λ2x.t[x] uiff: uiff(P;Q) and: P ∧ Q decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) fset: fset(T) quotient: x,y:A//B[x; y] squash: T true: True le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top fset-size: ||s|| ge: i ≥  fset-member: a ∈ s iff: ⇐⇒ Q rev_implies:  Q assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b less_than': less_than'(a;b) cons: [a b] bfalse: ff
Lemmas referenced :  fset_wf subtype_rel_self not_wf fset-member_wf fset-add_wf empty-fset_wf sq_stable_wf deq_wf le_wf fset-size_wf subtract_wf istype-int less_than_wf primrec-wf2 all_wf nat_wf fset-size-empty decidable__le squash_wf list_wf set-equal_wf set-equal-reflex equal-wf-base member_wf true_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermSubtract_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_less_lemma int_formula_prop_wf length-remove-repeats-le hd_wf length_wf assert-deq-member hd_member decidable__lt list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf assert_wf null_wf fset-remove_wf fset-add-remove iff_weakening_equal fset-size-remove iff_weakening_uiff member-fset-remove
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis Error :universeIsType,  introduction extract_by_obid isectElimination Error :functionIsType,  applyEquality instantiate universeEquality Error :isectIsType,  because_Cache natural_numberEquality rename setElimination Error :lambdaEquality_alt,  Error :inhabitedIsType,  equalityTransitivity equalitySymmetry Error :setIsType,  cumulativity functionEquality functionExtensionality productElimination independent_isectElimination hyp_replacement applyLambdaEquality unionElimination independent_functionElimination imageElimination imageMemberEquality baseClosed promote_hyp pointwiseFunctionality pertypeElimination productEquality approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation hypothesis_subsumption Error :equalityIsType1,  Error :productIsType

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}s:fset(T).  SqStable(P[s]))
            {}\mRightarrow{}  P[\{\}]
            {}\mRightarrow{}  (\mforall{}s:fset(T).  \mforall{}x:T.    (P[s]  {}\mRightarrow{}  P[fset-add(eq;x;s)]  supposing  \mneg{}x  \mmember{}  s))
            {}\mRightarrow{}  \{\mforall{}s:fset(T).  P[s]\})



Date html generated: 2019_06_20-PM-02_00_01
Last ObjectModification: 2018_09_30-PM-02_47_12

Theory : finite!sets


Home Index