Nuprl Lemma : fset-induction
∀[T:Type]
  ∀eq:EqDecider(T)
    ∀[P:fset(T) ⟶ ℙ]
      ((∀s:fset(T). SqStable(P[s]))
      
⇒ P[{}]
      
⇒ (∀s:fset(T). ∀x:T.  (P[s] 
⇒ P[fset-add(eq;x;s)] supposing ¬x ∈ s))
      
⇒ {∀s:fset(T). P[s]})
Proof
Definitions occuring in Statement : 
empty-fset: {}
, 
fset-add: fset-add(eq;x;s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
true: True
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
fset-size: ||s||
, 
ge: i ≥ j 
, 
fset-member: a ∈ s
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
bfalse: ff
Lemmas referenced : 
fset_wf, 
subtype_rel_self, 
not_wf, 
fset-member_wf, 
fset-add_wf, 
empty-fset_wf, 
sq_stable_wf, 
deq_wf, 
le_wf, 
fset-size_wf, 
subtract_wf, 
istype-int, 
less_than_wf, 
primrec-wf2, 
all_wf, 
nat_wf, 
fset-size-empty, 
decidable__le, 
squash_wf, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
equal-wf-base, 
member_wf, 
true_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
length-remove-repeats-le, 
hd_wf, 
length_wf, 
assert-deq-member, 
hd_member, 
decidable__lt, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
assert_wf, 
null_wf, 
fset-remove_wf, 
fset-add-remove, 
iff_weakening_equal, 
fset-size-remove, 
iff_weakening_uiff, 
member-fset-remove
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :functionIsType, 
applyEquality, 
instantiate, 
universeEquality, 
Error :isectIsType, 
because_Cache, 
natural_numberEquality, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :setIsType, 
cumulativity, 
functionEquality, 
functionExtensionality, 
productElimination, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality, 
unionElimination, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
productEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
hypothesis_subsumption, 
Error :equalityIsType1, 
Error :productIsType
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}s:fset(T).  SqStable(P[s]))
            {}\mRightarrow{}  P[\{\}]
            {}\mRightarrow{}  (\mforall{}s:fset(T).  \mforall{}x:T.    (P[s]  {}\mRightarrow{}  P[fset-add(eq;x;s)]  supposing  \mneg{}x  \mmember{}  s))
            {}\mRightarrow{}  \{\mforall{}s:fset(T).  P[s]\})
Date html generated:
2019_06_20-PM-02_00_01
Last ObjectModification:
2018_09_30-PM-02_47_12
Theory : finite!sets
Home
Index