Nuprl Lemma : member-fset-remove
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x,y:T].  uiff(x ∈ fset-remove(eq;y;s);x ∈ s ∧ (¬(x = y ∈ T)))
Proof
Definitions occuring in Statement : 
fset-remove: fset-remove(eq;y;s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fset-remove: fset-remove(eq;y;s)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
eqof: eqof(d)
Lemmas referenced : 
equal_wf, 
fset-member_witness, 
fset-member_wf, 
not_wf, 
assert_wf, 
bnot_wf, 
eqof_wf, 
uiff_wf, 
fset-filter_wf, 
fset-remove_wf, 
fset_wf, 
deq_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq, 
assert_witness, 
member-fset-filter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
independent_pairEquality, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
productEquality, 
applyEquality, 
setElimination, 
rename, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
independent_isectElimination, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x,y:T].
    uiff(x  \mmember{}  fset-remove(eq;y;s);x  \mmember{}  s  \mwedge{}  (\mneg{}(x  =  y)))
Date html generated:
2017_04_17-AM-09_19_42
Last ObjectModification:
2017_02_27-PM-05_22_58
Theory : finite!sets
Home
Index