Nuprl Lemma : member-fset-remove

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x,y:T].  uiff(x ∈ fset-remove(eq;y;s);x ∈ s ∧ (x y ∈ T)))


Proof




Definitions occuring in Statement :  fset-remove: fset-remove(eq;y;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  fset-remove: fset-remove(eq;y;s) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q eqof: eqof(d)
Lemmas referenced :  equal_wf fset-member_witness fset-member_wf not_wf assert_wf bnot_wf eqof_wf uiff_wf fset-filter_wf fset-remove_wf fset_wf deq_wf iff_transitivity iff_weakening_uiff assert_of_bnot safe-assert-deq assert_witness member-fset-filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis lambdaFormation independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule independent_pairEquality because_Cache lambdaEquality dependent_functionElimination productEquality applyEquality setElimination rename universeEquality isect_memberEquality equalityTransitivity equalitySymmetry addLevel independent_isectElimination impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x,y:T].
    uiff(x  \mmember{}  fset-remove(eq;y;s);x  \mmember{}  s  \mwedge{}  (\mneg{}(x  =  y)))



Date html generated: 2017_04_17-AM-09_19_42
Last ObjectModification: 2017_02_27-PM-05_22_58

Theory : finite!sets


Home Index