Nuprl Lemma : fset-size-empty

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  uiff(||s|| ≤ 0;s {} ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-size: ||s|| empty-fset: {} fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a fset: fset(T) all: x:A. B[x] prop: quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] empty-fset: {} nil: [] it: implies:  Q fset-size: ||s|| or: P ∨ Q top: Top cons: [a b] deq: EqDecider(T) ge: i ≥  false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B nat: less_than': less_than'(a;b) length: ||as|| list_ind: list_ind remove-repeats: remove-repeats(eq;L)
Lemmas referenced :  list_wf set-equal_wf set-equal-reflex quotient-member-eq set-equal-equiv nil_wf list-cases remove_repeats_nil_lemma istype-void length_of_nil_lemma istype-le product_subtype_list remove_repeats_cons_lemma length_of_cons_lemma non_neg_length filter_wf5 remove-repeats_wf l_member_wf bnot_wf full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf length_wf equal_wf squash_wf true_wf empty-fset_wf subtype_rel_self fset-size_wf istype-false le_wf le_witness_for_triv fset_wf deq_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation sqequalHypSubstitution Error :universeIsType,  extract_by_obid isectElimination thin hypothesisEquality hypothesis promote_hyp Error :lambdaFormation_alt,  Error :inhabitedIsType,  pointwiseFunctionality sqequalRule pertypeElimination productElimination Error :lambdaEquality_alt,  independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination unionElimination Error :isect_memberEquality_alt,  voidElimination natural_numberEquality because_Cache hypothesis_subsumption rename setElimination applyEquality Error :setIsType,  approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality addEquality closedConclusion Error :equalityIstype,  Error :productIsType,  sqequalBase imageElimination imageMemberEquality baseClosed instantiate universeEquality hyp_replacement applyLambdaEquality independent_pairEquality axiomEquality Error :isectIsTypeImplies

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    uiff(||s||  \mleq{}  0;s  =  \{\})



Date html generated: 2019_06_20-PM-02_13_48
Last ObjectModification: 2019_06_20-PM-02_07_41

Theory : finite!sets


Home Index