Nuprl Lemma : fset-size_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (||s|| ∈ ℕ)


Proof




Definitions occuring in Statement :  fset-size: ||s|| fset: fset(T) deq: EqDecider(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q fset-size: ||s|| prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_wf l_member_wf member-remove-repeats remove-repeats-no_repeats set-equal-no_repeats-length le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le remove-repeats_wf non_neg_length deq_wf fset_wf set-equal_wf list_wf equal-wf-base nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality lemma_by_obid hypothesis sqequalRule pertypeElimination productElimination thin productEquality isectElimination hypothesisEquality because_Cache cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality dependent_set_memberEquality dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation addLevel impliesFunctionality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (||s||  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-PM-03_45_39
Last ObjectModification: 2016_01_14-PM-10_39_41

Theory : finite!sets


Home Index