Nuprl Lemma : fset-size-remove
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T]. ||fset-remove(eq;x;s)|| = (||s|| - 1) ∈ ℤ supposing x ∈ s
Proof
Definitions occuring in Statement :
fset-size: ||s||
,
fset-remove: fset-remove(eq;y;s)
,
fset-member: a ∈ s
,
fset: fset(T)
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
fset: fset(T)
,
all: ∀x:A. B[x]
,
prop: ℙ
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
istype: istype(T)
,
true: True
,
nat: ℕ
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
fset-member: a ∈ s
,
fset-size: ||s||
,
fset-remove: fset-remove(eq;y;s)
,
fset-filter: {x ∈ s | P[x]}
,
deq: EqDecider(T)
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
not: ¬A
,
false: False
,
eqof: eqof(d)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
sq_type: SQType(T)
,
cand: A c∧ B
,
remove-first: remove-first(P;L)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
bnot: ¬bb
,
assert: ↑b
,
so_apply: x[s1;s2;s3]
,
top: Top
Lemmas referenced :
list_wf,
set-equal_wf,
set-equal-reflex,
equal_wf,
squash_wf,
true_wf,
fset-size_wf,
fset-remove_wf,
subtype_rel_self,
istype-nat,
fset_wf,
iff_weakening_equal,
subtract_wf,
istype-int,
fset-member_wf,
deq_wf,
istype-universe,
assert-deq-member,
bnot_wf,
length_wf,
remove-repeats_wf,
length-remove-first,
l_member_wf,
remove-repeats-filter,
l_all_iff,
not_wf,
assert_wf,
member-remove-repeats,
safe-assert-deq,
subtype_base_sq,
int_subtype_base,
remove-repeats-no_repeats,
list_induction,
no_repeats_wf,
filter_wf5,
list_ind_wf,
nil_wf,
bool_wf,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
cons_wf,
filter_nil_lemma,
list_ind_nil_lemma,
filter_cons_lemma,
list_ind_cons_lemma,
eqtt_to_assert,
no_repeats_cons,
cons_member,
filter_trivial,
iff_transitivity,
eqof_wf,
iff_weakening_uiff,
assert_of_bnot,
and_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalHypSubstitution,
Error :universeIsType,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
promote_hyp,
Error :lambdaFormation_alt,
Error :inhabitedIsType,
pointwiseFunctionality,
sqequalRule,
pertypeElimination,
productElimination,
Error :productIsType,
Error :equalityIsType4,
dependent_functionElimination,
applyEquality,
Error :lambdaEquality_alt,
imageElimination,
equalityTransitivity,
equalitySymmetry,
because_Cache,
intEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
setElimination,
rename,
independent_isectElimination,
independent_functionElimination,
closedConclusion,
instantiate,
universeEquality,
Error :isect_memberEquality_alt,
axiomEquality,
Error :isectIsTypeImplies,
Error :setIsType,
unionElimination,
voidElimination,
cumulativity,
independent_pairFormation,
Error :equalityIsType1,
lambdaFormation,
lambdaEquality,
functionEquality,
productEquality,
setEquality,
equalityElimination,
dependent_pairFormation,
isect_memberEquality,
voidEquality,
addLevel,
impliesFunctionality,
hyp_replacement,
dependent_set_memberEquality,
applyLambdaEquality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[s:fset(T)]. \mforall{}[x:T].
||fset-remove(eq;x;s)|| = (||s|| - 1) supposing x \mmember{} s
Date html generated:
2019_06_20-PM-01_59_48
Last ObjectModification:
2018_11_22-AM-10_00_28
Theory : finite!sets
Home
Index