Nuprl Lemma : fset-add_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T].  (fset-add(eq;x;s) ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-add: fset-add(eq;x;s) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  fset-add: fset-add(eq;x;s) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  fset-union_wf fset-singleton_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s)  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_39_47
Last ObjectModification: 2015_12_26-PM-06_41_29

Theory : finite!sets


Home Index