Nuprl Lemma : fset-add_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T].  (fset-add(eq;x;s) ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-add: fset-add(eq;x;s)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
fset-add: fset-add(eq;x;s)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
fset-union_wf, 
fset-singleton_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s)  \mmember{}  fset(T))
Date html generated:
2016_05_14-PM-03_39_47
Last ObjectModification:
2015_12_26-PM-06_41_29
Theory : finite!sets
Home
Index