Nuprl Lemma : lattice-fset-meet-free-dl-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (/\(λx.free-dl-inc(x)"(s)) {s} ∈ Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dl-inc: free-dl-inc(x) free-dist-lattice: free-dist-lattice(T; eq) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-singleton: {x} fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice implies:  Q all: x:A. B[x] uiff: uiff(P;Q) free-dl-inc: free-dl-inc(x) iff: ⇐⇒ Q rev_implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) rev_uimplies: rev_uimplies(P;Q) squash: T not: ¬A false: False exists: x:A. B[x] fset-singleton: {x} fset-filter: {x ∈ P[x]} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff fset-null: fset-null(s) assert: b guard: {T} lattice-point: Point(l) record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y f-subset: xs ⊆ ys sq_stable: SqStable(P) order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  free-dl-point deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 fset-antichain-singleton fset-singleton_wf lattice-fset-meet-is-glb free-dist-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf free-dl-inc_wf member-fset-image-iff fset-member_wf deq_wf free-dl-le fset-all-iff bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_of_bnot member-fset-singleton not_wf assert_witness filter_cons_lemma filter_nil_lemma equal-wf-T-base uiff_transitivity eqtt_to_assert assert-deq-f-subset iff_transitivity iff_weakening_uiff eqff_to_assert null_cons_lemma false_wf f-singleton-subset lattice-fset-meet_wf decidable__equal_free-dl subtype_rel_self fset-member_witness fset-ac-le-implies2 sq_stable__fset-member lattice-le-order bdd-distributive-lattice-subtype-lattice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis cumulativity hypothesisEquality applyEquality setEquality independent_isectElimination lambdaEquality because_Cache dependent_set_memberEquality equalityTransitivity equalitySymmetry productElimination instantiate productEquality universeEquality independent_functionElimination lambdaFormation axiomEquality dependent_functionElimination setElimination rename functionEquality functionExtensionality imageElimination hyp_replacement applyLambdaEquality baseClosed unionElimination equalityElimination independent_pairFormation impliesFunctionality dependent_pairFormation imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (/\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))  =  \{s\})



Date html generated: 2017_10_05-AM-00_35_59
Last ObjectModification: 2017_07_28-AM-09_14_51

Theory : lattices


Home Index