Nuprl Lemma : f-singleton-subset

[A:Type]. ∀[eq:EqDecider(A)]. ∀[a:A]. ∀[x:fset(A)].  uiff({a} ⊆ x;a ∈ x)


Proof




Definitions occuring in Statement :  fset-singleton: {x} f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  f-subset: xs ⊆ ys uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q guard: {T}
Lemmas referenced :  fset-member_witness all_wf isect_wf equal_wf fset-member_wf and_wf iff_weakening_uiff fset-singleton_wf member-fset-singleton uiff_wf f-subset_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut independent_pairFormation isect_memberFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis cumulativity sqequalRule lambdaEquality lambdaFormation hyp_replacement equalitySymmetry dependent_set_memberEquality applyLambdaEquality setElimination rename productElimination dependent_functionElimination isect_memberEquality equalityTransitivity addLevel independent_isectElimination allFunctionality universeEquality independent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[a:A].  \mforall{}[x:fset(A)].    uiff(\{a\}  \msubseteq{}  x;a  \mmember{}  x)



Date html generated: 2017_04_17-AM-09_19_02
Last ObjectModification: 2017_02_27-PM-05_22_24

Theory : finite!sets


Home Index