Nuprl Lemma : member-fset-add

[T:Type]. ∀eq:EqDecider(T). ∀s:fset(T). ∀x,y:T.  (x ∈ fset-add(eq;y;s) ⇐⇒ (x y ∈ T) ∨ x ∈ s)


Proof




Definitions occuring in Statement :  fset-add: fset-add(eq;x;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] fset-add: fset-add(eq;x;s) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a or: P ∨ Q
Lemmas referenced :  or_wf equal_wf fset-member_wf member-fset-singleton fset-singleton_wf iff_wf member-fset-union fset-union_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache addLevel productElimination independent_functionElimination orFunctionality independent_isectElimination impliesFunctionality dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).  \mforall{}x,y:T.    (x  \mmember{}  fset-add(eq;y;s)  \mLeftarrow{}{}\mRightarrow{}  (x  =  y)  \mvee{}  x  \mmember{}  s)



Date html generated: 2017_04_17-AM-09_19_45
Last ObjectModification: 2017_02_27-PM-05_22_53

Theory : finite!sets


Home Index