Nuprl Lemma : member-fset-add
∀[T:Type]. ∀eq:EqDecider(T). ∀s:fset(T). ∀x,y:T.  (x ∈ fset-add(eq;y;s) 
⇐⇒ (x = y ∈ T) ∨ x ∈ s)
Proof
Definitions occuring in Statement : 
fset-add: fset-add(eq;x;s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
fset-add: fset-add(eq;x;s)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
or: P ∨ Q
Lemmas referenced : 
or_wf, 
equal_wf, 
fset-member_wf, 
member-fset-singleton, 
fset-singleton_wf, 
iff_wf, 
member-fset-union, 
fset-union_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_functionElimination, 
orFunctionality, 
independent_isectElimination, 
impliesFunctionality, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).  \mforall{}x,y:T.    (x  \mmember{}  fset-add(eq;y;s)  \mLeftarrow{}{}\mRightarrow{}  (x  =  y)  \mvee{}  x  \mmember{}  s)
Date html generated:
2017_04_17-AM-09_19_45
Last ObjectModification:
2017_02_27-PM-05_22_53
Theory : finite!sets
Home
Index