Nuprl Lemma : lattice-fset-join-union

[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].  (\/(s1 ⋃ s2) \/(s1) ∨ \/(s2) ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-lattice: BoundedLattice lattice-join: a ∨ b lattice-point: Point(l) fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] uimplies: supposing a prop: guard: {T} subtype_rel: A ⊆B bdd-lattice: BoundedLattice and: P ∧ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: lattice-0: 0 record-select: r.x top: Top lattice-axioms: lattice-axioms(l)
Lemmas referenced :  fset-induction all_wf equal_wf lattice-fset-join_wf decidable-equal-deq fset-union_wf lattice-join_wf sq_stable__all sq_stable__equal not_wf fset-member_wf fset_wf deq_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf squash_wf true_wf decidable_wf empty-fset-union empty-fset_wf iff_weakening_equal lattice-0_wf lattice-join-0 fset-add-union fset-add_wf reduce_cons_lemma fset-add-as-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality independent_functionElimination lambdaFormation hypothesis axiomEquality applyEquality instantiate productEquality cumulativity independent_isectElimination imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed natural_numberEquality productElimination setElimination rename hyp_replacement applyLambdaEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    (\mbackslash{}/(s1  \mcup{}  s2)  =  \mbackslash{}/(s1)  \mvee{}  \mbackslash{}/(s2))



Date html generated: 2017_10_05-AM-00_33_43
Last ObjectModification: 2017_07_28-AM-09_13_53

Theory : lattices


Home Index