Nuprl Lemma : fset-add-as-cons

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T].  (fset-add(eq;x;s) [x s] ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-add: fset-add(eq;x;s) fset: fset(T) cons: [a b] deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q fset-member: a ∈ s top: Top deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt eqof: eqof(d) assert: b ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A bor: p ∨bq true: True
Lemmas referenced :  fset_wf deq_wf cons-wf-fset fset-extensionality fset-add_wf fset-member_witness or_wf equal_wf fset-member_wf member-fset-add uiff_wf deq_member_cons_lemma bool_wf eqtt_to_assert safe-assert-deq testxxx_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache extract_by_obid cumulativity universeEquality equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_pairFormation independent_functionElimination rename addLevel dependent_functionElimination independent_pairEquality voidElimination voidEquality applyEquality setElimination lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate natural_numberEquality inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s)  =  [x  /  s])



Date html generated: 2017_04_17-AM-09_19_48
Last ObjectModification: 2017_02_27-PM-05_22_55

Theory : finite!sets


Home Index