Nuprl Lemma : fset-add-as-cons
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T].  (fset-add(eq;x;s) = [x / s] ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-add: fset-add(eq;x;s)
, 
fset: fset(T)
, 
cons: [a / b]
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
fset-member: a ∈ s
, 
top: Top
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
eqof: eqof(d)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
bor: p ∨bq
, 
true: True
Lemmas referenced : 
fset_wf, 
deq_wf, 
cons-wf-fset, 
fset-extensionality, 
fset-add_wf, 
fset-member_witness, 
or_wf, 
equal_wf, 
fset-member_wf, 
member-fset-add, 
uiff_wf, 
deq_member_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
testxxx_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
rename, 
addLevel, 
dependent_functionElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
setElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
natural_numberEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s)  =  [x  /  s])
Date html generated:
2017_04_17-AM-09_19_48
Last ObjectModification:
2017_02_27-PM-05_22_55
Theory : finite!sets
Home
Index