Nuprl Lemma : cons-wf-fset

[T:Type]. ∀[s:fset(T)]. ∀[x:T].  ([x s] ∈ fset(T))


Proof




Definitions occuring in Statement :  fset: fset(T) cons: [a b] uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q prop: set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  quotient-member-eq list_wf set-equal_wf set-equal-equiv cons_wf equal-wf-base fset_wf or_wf equal_wf l_member_wf cons_member iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination productEquality cumulativity universeEquality lambdaFormation independent_pairFormation addLevel equalityTransitivity equalitySymmetry orFunctionality impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    ([x  /  s]  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_39_51
Last ObjectModification: 2015_12_26-PM-06_41_33

Theory : finite!sets


Home Index