Nuprl Lemma : empty-fset-union

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  ({} ⋃ s ∈ fset(T))


Proof




Definitions occuring in Statement :  empty-fset: {} fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] top: Top or: P ∨ Q false: False implies:  Q prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-union_wf empty-fset_wf fset_wf deq_wf mem_empty_lemma fset-member_witness or_wf false_wf fset-member_wf member-fset-union uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache universeEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation unionElimination independent_functionElimination rename inrFormation addLevel cumulativity independent_pairEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (\{\}  \mcup{}  s  =  s)



Date html generated: 2016_05_14-PM-03_40_39
Last ObjectModification: 2015_12_26-PM-06_40_48

Theory : finite!sets


Home Index