Nuprl Lemma : fset-add-union
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s1,s2:fset(T)]. ∀[x:T].  (fset-add(eq;x;s1) ⋃ s2 = [x / s1 ⋃ s2] ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-add: fset-add(eq;x;s)
, 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
cons: [a / b]
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
fset-add-as-cons, 
equal_wf, 
squash_wf, 
true_wf, 
fset-union_wf, 
fset-add_wf, 
iff_weakening_equal, 
fset-extensionality, 
decidable__fset-member, 
fset-member_wf, 
or_wf, 
member-fset-add, 
uiff_wf, 
fset-member_witness, 
member-fset-union, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
cumulativity, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
inrFormation, 
inlFormation, 
voidElimination, 
addLevel, 
orFunctionality, 
rename, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s1,s2:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s1)  \mcup{}  s2  =  [x  /  s1  \mcup{}  s2])
Date html generated:
2017_04_17-AM-09_19_50
Last ObjectModification:
2017_02_27-PM-05_23_02
Theory : finite!sets
Home
Index