Nuprl Lemma : fset-add-union

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s1,s2:fset(T)]. ∀[x:T].  (fset-add(eq;x;s1) ⋃ s2 [x s1 ⋃ s2] ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-add: fset-add(eq;x;s) fset-union: x ⋃ y fset: fset(T) cons: [a b] deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uiff: uiff(P;Q) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A false: False
Lemmas referenced :  fset-add-as-cons equal_wf squash_wf true_wf fset-union_wf fset-add_wf iff_weakening_equal fset-extensionality decidable__fset-member fset-member_wf or_wf member-fset-add uiff_wf fset-member_witness member-fset-union fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity hypothesis equalitySymmetry cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination independent_pairFormation dependent_functionElimination unionElimination inrFormation inlFormation voidElimination addLevel orFunctionality rename independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s1,s2:fset(T)].  \mforall{}[x:T].    (fset-add(eq;x;s1)  \mcup{}  s2  =  [x  /  s1  \mcup{}  s2])



Date html generated: 2017_04_17-AM-09_19_50
Last ObjectModification: 2017_02_27-PM-05_23_02

Theory : finite!sets


Home Index