Step
*
of Lemma
free-dist-lattice-hom-unique
∀T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
∀g,h:Hom(free-dist-lattice(T; eq);L).
((f = (g o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
⇒ (f = (h o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L)))
⇒ (g = h ∈ Hom(free-dist-lattice(T; eq);L)))
BY
{ (Auto THEN UsingVars [`eqL'] (BLemma `free-dist-lattice-hom-unique2`) THEN Auto) }
1
1. T : Type@i'
2. eq : EqDecider(T)@i
3. L : BoundedDistributiveLattice@i'
4. eqL : EqDecider(Point(L))@i
5. f : T ⟶ Point(L)@i
6. g : Hom(free-dist-lattice(T; eq);L)@i
7. h : Hom(free-dist-lattice(T; eq);L)@i
8. f = (g o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L))@i
9. f = (h o (λx.free-dl-inc(x))) ∈ (T ⟶ Point(L))@i
10. x : T@i
⊢ (g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(L)
Latex:
Latex:
\mforall{}T:Type. \mforall{}eq:EqDecider(T). \mforall{}L:BoundedDistributiveLattice. \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f:T {}\mrightarrow{} Point(L). \mforall{}g,h:Hom(free-dist-lattice(T; eq);L).
((f = (g o (\mlambda{}x.free-dl-inc(x)))) {}\mRightarrow{} (f = (h o (\mlambda{}x.free-dl-inc(x)))) {}\mRightarrow{} (g = h))
By
Latex:
(Auto THEN UsingVars [`eqL'] (BLemma `free-dist-lattice-hom-unique2`) THEN Auto)
Home
Index