Nuprl Lemma : compose-bounded-lattice-hom

[l1,l2,l3:BoundedLattice]. ∀[f:Hom(l1;l2)]. ∀[g:Hom(l2;l3)].  (g f ∈ Hom(l1;l3))


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice compose: g uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q subtype_rel: A ⊆B cand: c∧ B lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice prop: compose: g so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  compose-lattice-hom bdd-lattice-subtype-lattice equal_wf lattice-0_wf lattice-1_wf bounded-lattice-hom_wf bdd-lattice_wf and_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis sqequalRule independent_pairFormation productEquality because_Cache equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality hyp_replacement instantiate lambdaEquality cumulativity independent_isectElimination applyLambdaEquality

Latex:
\mforall{}[l1,l2,l3:BoundedLattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[g:Hom(l2;l3)].    (g  o  f  \mmember{}  Hom(l1;l3))



Date html generated: 2017_10_05-AM-00_30_41
Last ObjectModification: 2017_07_28-AM-09_12_41

Theory : lattices


Home Index