Nuprl Lemma : compose-bounded-lattice-hom
∀[l1,l2,l3:BoundedLattice]. ∀[f:Hom(l1;l2)]. ∀[g:Hom(l2;l3)].  (g o f ∈ Hom(l1;l3))
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bounded-lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
prop: ℙ
, 
compose: f o g
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
compose-lattice-hom, 
bdd-lattice-subtype-lattice, 
equal_wf, 
lattice-0_wf, 
lattice-1_wf, 
bounded-lattice-hom_wf, 
bdd-lattice_wf, 
and_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
productEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
hyp_replacement, 
instantiate, 
lambdaEquality, 
cumulativity, 
independent_isectElimination, 
applyLambdaEquality
Latex:
\mforall{}[l1,l2,l3:BoundedLattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[g:Hom(l2;l3)].    (g  o  f  \mmember{}  Hom(l1;l3))
Date html generated:
2017_10_05-AM-00_30_41
Last ObjectModification:
2017_07_28-AM-09_12_41
Theory : lattices
Home
Index