Nuprl Lemma : compose-lattice-hom

[l1,l2,l3:Lattice]. ∀[f:Hom(l1;l2)]. ∀[g:Hom(l2;l3)].  (g f ∈ Hom(l1;l3))


Proof




Definitions occuring in Statement :  lattice-hom: Hom(l1;l2) lattice: Lattice compose: g uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-hom: Hom(l1;l2) lattice: Lattice and: P ∧ Q cand: c∧ B compose: g so_lambda: λ2x.t[x] prop: so_apply: x[s] true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  compose_wf lattice-point_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-hom_wf lattice_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality functionExtensionality applyEquality sqequalRule independent_pairFormation productElimination independent_pairEquality axiomEquality isect_memberEquality lambdaEquality productEquality equalityTransitivity equalitySymmetry natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[l1,l2,l3:Lattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[g:Hom(l2;l3)].    (g  o  f  \mmember{}  Hom(l1;l3))



Date html generated: 2017_10_05-AM-00_30_29
Last ObjectModification: 2017_07_28-AM-09_12_33

Theory : lattices


Home Index