Nuprl Lemma : free-dma-lift_wf

T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
  (free-dma-lift(T;eq;dm;eq2;f) ∈ {g:dma-hom(free-DeMorgan-algebra(T;eq);dm)| ∀i:T. ((g <i>(f i) ∈ Point(dm))} )


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) uall: [x:A]. B[x] subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] free-DeMorgan-algebra-property free-dist-lattice-property dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt sq_exists: x:A [B[x]] implies:  Q
Lemmas referenced :  lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf deq_wf DeMorgan-algebra_wf istype-universe free-DeMorgan-algebra-property subtype_rel_self all_wf sq_exists_wf dma-hom_wf free-DeMorgan-algebra_wf dminc_wf subtype_rel_function free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis functionIsType universeIsType hypothesisEquality introduction extract_by_obid isectElimination thin applyEquality sqequalRule instantiate lambdaEquality_alt productEquality independent_isectElimination cumulativity inhabitedIsType equalityTransitivity equalitySymmetry because_Cache universeEquality functionEquality dependent_functionElimination setElimination rename equalityIsType1 independent_functionElimination functionExtensionality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
    (free-dma-lift(T;eq;dm;eq2;f)  \mmember{}  \{g:dma-hom(free-DeMorgan-algebra(T;eq);dm)| 
                                                                      \mforall{}i:T.  ((g  <i>)  =  (f  i))\}  )



Date html generated: 2019_10_31-AM-07_22_59
Last ObjectModification: 2018_11_08-PM-06_00_25

Theory : lattices


Home Index