Nuprl Lemma : free-DeMorgan-algebra-property

T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
  (∃g:dma-hom(free-DeMorgan-algebra(T;eq);dm) [(∀i:T. ((g <i>(f i) ∈ Point(dm)))])


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] sq_exists: x:A [B[x]] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q DeMorgan-algebra: DeMorganAlgebra prop: free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) exists: x:A. B[x] compose: g dminc: <i> sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a guard: {T} dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt dmopp: <1-i> top: Top dma-neg: ¬(x) cand: c∧ B bdd-distributive-lattice: BoundedDistributiveLattice true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  free-dist-lattice-property union-deq_wf DeMorgan-algebra-subtype dma-neg_wf equal_wf all_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf dminc_wf deq_wf DeMorgan-algebra_wf free-dma-hom-is-lattice-hom free-dma-point free-dist-lattice-hom-unique rec_select_update_lemma dm-neg-properties lattice-0_wf free-DeMorgan-lattice_wf bdd-distributive-lattice_wf lattice-1_wf iff_weakening_equal DeMorgan-algebra-laws squash_wf true_wf subtype_rel_self dm-neg_wf dmopp_wf dm-neg-opp dm-neg-inc free-DeMorgan-algebra_wf subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin unionEquality hypothesisEquality isectElimination hypothesis applyEquality sqequalRule lambdaEquality equalityTransitivity equalitySymmetry because_Cache unionElimination setElimination rename independent_functionElimination productElimination applyLambdaEquality inlEquality dependent_set_memberFormation cumulativity instantiate productEquality independent_isectElimination functionExtensionality functionEquality universeEquality inrEquality dependent_set_memberEquality hyp_replacement isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality imageElimination imageMemberEquality baseClosed isect_memberFormation independent_pairEquality axiomEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
    (\mexists{}g:dma-hom(free-DeMorgan-algebra(T;eq);dm)  [(\mforall{}i:T.  ((g  <i>)  =  (f  i)))])



Date html generated: 2019_10_31-AM-07_22_53
Last ObjectModification: 2018_08_21-PM-02_02_30

Theory : lattices


Home Index