Nuprl Lemma : DeMorgan-algebra-laws
∀[dma:DeMorganAlgebra]
  ((∀x:Point(dma). (¬(¬(x)) = x ∈ Point(dma)))
  ∧ (∀x,y:Point(dma).  (¬(x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(dma)))
  ∧ (∀x,y:Point(dma).  (¬(x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dma)))
  ∧ (¬(0) = 1 ∈ Point(dma))
  ∧ (¬(1) = 0 ∈ Point(dma)))
Proof
Definitions occuring in Statement : 
DeMorgan-algebra: DeMorganAlgebra
, 
dma-neg: ¬(x)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
DeMorgan-algebra: DeMorganAlgebra
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lattice-axioms: lattice-axioms(l)
Lemmas referenced : 
lattice-point_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
subtype_rel_set, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
DeMorgan-algebra_wf, 
lattice-0_wf, 
and_wf, 
dma-neg_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-1_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
lattice-meet-0, 
lattice-join-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lambdaFormation, 
productElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
productEquality, 
cumulativity, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyLambdaEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[dma:DeMorganAlgebra]
    ((\mforall{}x:Point(dma).  (\mneg{}(\mneg{}(x))  =  x))
    \mwedge{}  (\mforall{}x,y:Point(dma).    (\mneg{}(x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}x,y:Point(dma).    (\mneg{}(x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mneg{}(0)  =  1)
    \mwedge{}  (\mneg{}(1)  =  0))
Date html generated:
2017_10_05-AM-00_42_07
Last ObjectModification:
2017_07_28-AM-09_17_00
Theory : lattices
Home
Index