Nuprl Lemma : DeMorgan-algebra-laws

[dma:DeMorganAlgebra]
  ((∀x:Point(dma). (x)) x ∈ Point(dma)))
  ∧ (∀x,y:Point(dma).  (x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(dma)))
  ∧ (∀x,y:Point(dma).  (x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dma)))
  ∧ (0) 1 ∈ Point(dma))
  ∧ (1) 0 ∈ Point(dma)))


Proof




Definitions occuring in Statement :  DeMorgan-algebra: DeMorganAlgebra dma-neg: ¬(x) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s] DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma) true: True squash: T iff: ⇐⇒ Q implies:  Q rev_implies:  Q lattice-axioms: lattice-axioms(l)
Lemmas referenced :  lattice-point_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-structure_wf subtype_rel_set lattice-axioms_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf DeMorgan-algebra_wf lattice-0_wf and_wf dma-neg_wf squash_wf true_wf iff_weakening_equal lattice-1_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype bdd-distributive-lattice_wf bdd-lattice_wf lattice-meet-0 lattice-join-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality sqequalHypSubstitution setElimination thin rename lambdaFormation productElimination hypothesis extract_by_obid isectElimination applyEquality instantiate independent_isectElimination sqequalRule independent_pairFormation because_Cache independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality productEquality cumulativity universeEquality hyp_replacement equalitySymmetry dependent_set_memberEquality equalityTransitivity applyLambdaEquality natural_numberEquality imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[dma:DeMorganAlgebra]
    ((\mforall{}x:Point(dma).  (\mneg{}(\mneg{}(x))  =  x))
    \mwedge{}  (\mforall{}x,y:Point(dma).    (\mneg{}(x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}x,y:Point(dma).    (\mneg{}(x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mneg{}(0)  =  1)
    \mwedge{}  (\mneg{}(1)  =  0))



Date html generated: 2017_10_05-AM-00_42_07
Last ObjectModification: 2017_07_28-AM-09_17_00

Theory : lattices


Home Index