Nuprl Lemma : DeMorgan-algebra-subtype

DeMorganAlgebra ⊆BoundedDistributiveLattice


Proof




Definitions occuring in Statement :  DeMorgan-algebra: DeMorganAlgebra bdd-distributive-lattice: BoundedDistributiveLattice subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T DeMorgan-algebra: DeMorganAlgebra bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  DeMorgan-algebra-structure-subtype lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality hypothesisEquality applyEquality lemma_by_obid hypothesis sqequalRule productElimination independent_pairFormation productEquality isectElimination because_Cache

Latex:
DeMorganAlgebra  \msubseteq{}r  BoundedDistributiveLattice



Date html generated: 2016_05_18-AM-11_47_22
Last ObjectModification: 2015_12_28-PM-01_55_53

Theory : lattices


Home Index