Nuprl Lemma : free-dma-hom-is-lattice-hom

[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:BoundedDistributiveLattice].
  (Hom(free-DeMorgan-lattice(T;eq);dm) Hom(free-DeMorgan-algebra(T;eq);dm) ∈ Type)


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T bdd-distributive-lattice: BoundedDistributiveLattice true: True subtype_rel: A ⊆B free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) bounded-lattice-structure: BoundedLatticeStructure record+: record+ all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff lattice-point: Point(l) so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False lattice-meet: a ∧ b lattice-join: a ∨ b lattice-1: 1 lattice-0: 0 record: record(x.T[x]) record-update: r[x := v]
Lemmas referenced :  bounded-lattice-hom_wf bdd-distributive-lattice_wf deq_wf istype-universe free-DeMorgan-lattice_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma istype-void lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert lattice-1_wf lattice-0_wf top_wf subtype_rel_self top-subtype-record
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis setElimination rename hypothesisEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate universeEquality equalityTransitivity equalitySymmetry dependentIntersectionEqElimination dependentIntersection_memberEquality functionExtensionality tokenEquality lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion atomEquality independent_functionElimination productElimination independent_isectElimination cumulativity dependent_functionElimination voidElimination productEquality independent_pairFormation equalityIsType4 functionIsType equalityIsType1 voidEquality isect_memberEquality lambdaFormation impliesFunctionality functionEquality dependentIntersectionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:BoundedDistributiveLattice].
    (Hom(free-DeMorgan-lattice(T;eq);dm)  =  Hom(free-DeMorgan-algebra(T;eq);dm))



Date html generated: 2019_10_31-AM-07_22_43
Last ObjectModification: 2018_11_10-PM-00_07_10

Theory : lattices


Home Index