Nuprl Lemma : face-term-at-restriction-eq-1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A,B:fset(ℕ)]. ∀[g:B ⟶ A]. ∀[v:Gamma(A)].
  phi(g(v)) 1 ∈ Point(face_lattice(B)) supposing phi(v) 1 ∈ Point(face_lattice(A))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X)
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe lattice-point_wf face_lattice_wf face-term-at-restriction subtype_rel_self lattice-1_wf iff_weakening_equal cube-set-restriction_wf face-presheaf_wf2 face-presheaf-restriction-1 subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf I_cube_wf names-hom_wf fset_wf nat_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination equalityIstype productEquality cumulativity isectEquality setElimination rename inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:B  {}\mrightarrow{}  A].  \mforall{}[v:Gamma(A)].
    phi(g(v))  =  1  supposing  phi(v)  =  1



Date html generated: 2020_05_20-PM-02_44_45
Last ObjectModification: 2020_04_04-PM-04_58_58

Theory : cubical!type!theory


Home Index