Nuprl Lemma : face-term-at-restriction

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:Gamma(I)].  (phi(f(a)) f(phi(a)) ∈ 𝔽(J))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face-presheaf: 𝔽 cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-presheaf: 𝔽 all: x:A. B[x] cubical-term: {X ⊢ _:A} cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  I_cube_pair_redex_lemma cube_set_restriction_pair_lemma face-type-ap-morph subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf I_cube_wf names-hom_wf fset_wf nat_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis setElimination rename isectElimination equalitySymmetry hypothesisEquality applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache universeIsType independent_isectElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:Gamma(I)].
    (phi(f(a))  =  f(phi(a)))



Date html generated: 2020_05_20-PM-02_44_35
Last ObjectModification: 2020_04_04-PM-04_58_47

Theory : cubical!type!theory


Home Index