Nuprl Lemma : face-type-ap-morph

[I,J,f,rho,u:Top].  ((u rho f) (u)<f>)


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-type-ap-morph: (u f) fl-morph: <f> uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  cube-set-restriction: f(s) face-presheaf: 𝔽 pi2: snd(t) constant-cubical-type: (X) cubical-type-ap-morph: (u f) face-type: 𝔽 member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution lemma_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  (u)<f>)



Date html generated: 2018_05_23-AM-09_19_29
Last ObjectModification: 2018_02_26-PM-05_54_59

Theory : cubical!type!theory


Home Index