Nuprl Lemma : face-type-ap-morph
∀[I,J,f,rho,u:Top].  ((u rho f) ~ (u)<f>)
Proof
Definitions occuring in Statement : 
face-type: 𝔽
, 
cubical-type-ap-morph: (u a f)
, 
fl-morph: <f>
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cube-set-restriction: f(s)
, 
face-presheaf: 𝔽
, 
pi2: snd(t)
, 
constant-cubical-type: (X)
, 
cubical-type-ap-morph: (u a f)
, 
face-type: 𝔽
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  (u)<f>)
Date html generated:
2018_05_23-AM-09_19_29
Last ObjectModification:
2018_02_26-PM-05_54_59
Theory : cubical!type!theory
Home
Index