Nuprl Lemma : face-presheaf-restriction-1

[A,B:fset(ℕ)]. ∀[g:B ⟶ A].  (g(1) 1 ∈ Point(face_lattice(B)))


Proof




Definitions occuring in Statement :  face-presheaf: 𝔽 face_lattice: face_lattice(I) cube-set-restriction: f(s) names-hom: I ⟶ J lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-presheaf: 𝔽 all: x:A. B[x] top: Top
Lemmas referenced :  names-hom_wf fset_wf nat_wf cube_set_restriction_pair_lemma fl-morph-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:B  {}\mrightarrow{}  A].    (g(1)  =  1)



Date html generated: 2018_05_23-AM-08_38_59
Last ObjectModification: 2018_05_20-PM-05_50_47

Theory : cubical!type!theory


Home Index