Nuprl Lemma : face-presheaf-restriction-1
∀[A,B:fset(ℕ)]. ∀[g:B ⟶ A].  (g(1) = 1 ∈ Point(face_lattice(B)))
Proof
Definitions occuring in Statement : 
face-presheaf: 𝔽
, 
face_lattice: face_lattice(I)
, 
cube-set-restriction: f(s)
, 
names-hom: I ⟶ J
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-presheaf: 𝔽
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
names-hom_wf, 
fset_wf, 
nat_wf, 
cube_set_restriction_pair_lemma, 
fl-morph-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:B  {}\mrightarrow{}  A].    (g(1)  =  1)
Date html generated:
2018_05_23-AM-08_38_59
Last ObjectModification:
2018_05_20-PM-05_50_47
Theory : cubical!type!theory
Home
Index