Nuprl Lemma : fl-morph-1

[A,B:fset(ℕ)]. ∀[g:A ⟶ B].  ((1)<g> 1 ∈ Point(face_lattice(A)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice all: x:A. B[x] implies:  Q bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q prop:
Lemmas referenced :  fl-morph_wf bounded-lattice-hom_wf face_lattice_wf bdd-distributive-lattice_wf equal_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule because_Cache lambdaFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[A,B:fset(\mBbbN{})].  \mforall{}[g:A  {}\mrightarrow{}  B].    ((1)<g>  =  1)



Date html generated: 2017_10_05-AM-01_14_29
Last ObjectModification: 2017_07_28-AM-09_31_36

Theory : cubical!type!theory


Home Index