Nuprl Lemma : fl-morph_wf

[I,J:fset(ℕ)]. ∀[f:I ⟶ J].  (<f> ∈ Hom(face_lattice(J);face_lattice(I)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) names-hom: I ⟶ J bounded-lattice-hom: Hom(l1;l2) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J subtype_rel: A ⊆B uimplies: supposing a lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q fl-morph: <f> fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) DeMorgan-algebra: DeMorganAlgebra
Lemmas referenced :  fl-lift_wf names_wf names-deq_wf face_lattice_wf face_lattice-deq_wf dM-to-FL_wf dm-neg_wf subtype_rel-equal lattice-point_wf dM_wf free-DeMorgan-lattice_wf equal_wf squash_wf true_wf dM-to-FL-neg2 lattice-0_wf iff_weakening_equal bounded-lattice-hom_wf all_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl0_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf fl1_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality sqequalRule independent_isectElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination setElimination rename setEquality productEquality instantiate cumulativity axiomEquality isect_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].    (<f>  \mmember{}  Hom(face\_lattice(J);face\_lattice(I)))



Date html generated: 2017_10_05-AM-01_13_14
Last ObjectModification: 2017_07_28-AM-09_30_48

Theory : cubical!type!theory


Home Index