Nuprl Lemma : face_lattice-deq_wf

[I:fset(ℕ)]. (face_lattice-deq() ∈ EqDecider(Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face_lattice: face_lattice(I) subtype_rel: A ⊆B face_lattice-deq: face_lattice-deq() and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s] all: x:A. B[x] union-deq: union-deq(A;B;a;b) bdd-distributive-lattice: BoundedDistributiveLattice guard: {T}
Lemmas referenced :  fl-point names_wf names-deq_wf fset_wf nat_wf deq-fset_wf strong-subtype-deq-subtype strong-subtype-set2 all_wf not_wf fset-member_wf union-deq_wf deq_functionality_wrt_ext-eq lattice-point_wf face-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf assert_wf fset-antichain_wf ext-eq_inversion deq_wf subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry applyEquality unionEquality because_Cache setEquality productEquality independent_isectElimination lambdaEquality functionEquality inlEquality inrEquality instantiate cumulativity universeEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  (face\_lattice-deq()  \mmember{}  EqDecider(Point(face\_lattice(I))))



Date html generated: 2016_05_18-PM-00_09_12
Last ObjectModification: 2015_12_28-PM-03_03_35

Theory : cubical!type!theory


Home Index