Nuprl Lemma : deq_functionality_wrt_ext-eq

[A,B:Type].  EqDecider(A) ≡ EqDecider(B) supposing A ≡ B


Proof




Definitions occuring in Statement :  deq: EqDecider(T) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B deq: EqDecider(T) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q guard: {T}
Lemmas referenced :  subtype_rel_dep_function bool_wf subtype_rel_self equal_wf equal_functionality_wrt_subtype_rel2 assert_wf all_wf iff_wf deq_wf ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lambdaEquality setElimination rename dependent_set_memberEquality hypothesisEquality applyEquality lemma_by_obid isectElimination sqequalRule functionEquality hypothesis independent_isectElimination lambdaFormation because_Cache independent_pairFormation dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry independent_pairEquality axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].    EqDecider(A)  \mequiv{}  EqDecider(B)  supposing  A  \mequiv{}  B



Date html generated: 2016_05_14-AM-06_06_20
Last ObjectModification: 2015_12_26-AM-11_46_57

Theory : equality!deciders


Home Index