Nuprl Lemma : fl1_wf
∀[I:fset(ℕ)]. ∀[x:names(I)]. ((x=1) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement :
fl1: (x=1)
,
face_lattice: face_lattice(I)
,
names: names(I)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
face_lattice: face_lattice(I)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fl1: (x=1)
Lemmas referenced :
face-lattice1_wf,
names_wf,
names-deq_wf,
fset_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[I:fset(\mBbbN{})]. \mforall{}[x:names(I)]. ((x=1) \mmember{} Point(face\_lattice(I)))
Date html generated:
2016_05_18-PM-00_09_37
Last ObjectModification:
2015_12_28-PM-03_02_17
Theory : cubical!type!theory
Home
Index