Nuprl Lemma : fl-lift_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f0,f1:T ⟶ Point(L)].
  fl-lift(T;eq;L;eqL;f0;f1) ∈ {g:Hom(face-lattice(T;eq);L)| 
                               ∀x:T. (((g (x=0)) (f0 x) ∈ Point(L)) ∧ ((g (x=1)) (f1 x) ∈ Point(L)))}  
  supposing ∀x:T. (f0 x ∧ f1 0 ∈ Point(L))


Proof




Definitions occuring in Statement :  fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fl-lift: fl-lift(T;eq;L;eqL;f0;f1) prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q so_apply: x[s] face-lattice-property free-dist-lattice-with-constraints-property all: x:A. B[x] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) sq_exists: x:{A| B[x]} implies:  Q
Lemmas referenced :  all_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf deq_wf bdd-distributive-lattice_wf face-lattice-property isect_wf sq_exists_wf bounded-lattice-hom_wf face-lattice_wf face-lattice0_wf face-lattice1_wf uimplies_subtype free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality instantiate productEquality universeEquality because_Cache independent_isectElimination functionExtensionality setElimination rename isect_memberEquality functionEquality lambdaFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f0,f1:T  {}\mrightarrow{}  Point(L)].
    fl-lift(T;eq;L;eqL;f0;f1)  \mmember{}  \{g:Hom(face-lattice(T;eq);L)| 
                                                              \mforall{}x:T.  (((g  (x=0))  =  (f0  x))  \mwedge{}  ((g  (x=1))  =  (f1  x)))\}   
    supposing  \mforall{}x:T.  (f0  x  \mwedge{}  f1  x  =  0)



Date html generated: 2017_10_05-AM-00_41_04
Last ObjectModification: 2017_07_28-AM-09_16_21

Theory : lattices


Home Index