Nuprl Lemma : free-dist-lattice-with-constraints-property
∀[T:Type]
  ∀eq:EqDecider(T)
    ∀[Cs:T ⟶ fset(fset(T))]
      ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f:T ⟶ Point(L).
        ∃g:Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L)
         (f = (g o (λx.free-dlwc-inc(eq;a.Cs[a];x))) ∈ (T ⟶ Point(L))) 
        supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x] 
⇒ (/\(f"(c)) = 0 ∈ Point(L)))
Proof
Definitions occuring in Statement : 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-fset-meet: /\(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
compose: f o g
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
lattice-extend-is-hom-constrained, 
equal_wf, 
squash_wf, 
true_wf, 
lattice-extend-dlwc-inc, 
iff_weakening_equal, 
compose_wf, 
lattice-point_wf, 
free-dist-lattice-with-constraints_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
free-dlwc-inc_wf, 
all_wf, 
lattice-fset-meet_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
decidable-equal-deq, 
fset-image_wf, 
lattice-0_wf, 
deq_wf, 
bdd-distributive-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
rename, 
dependent_pairFormation, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
instantiate, 
productEquality, 
setElimination, 
functionEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))]
            \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).  \mforall{}f:T  {}\mrightarrow{}  Point(L).
                \mexists{}g:Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L)
                  (f  =  (g  o  (\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)))) 
                supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))
Date html generated:
2017_10_05-AM-00_40_03
Last ObjectModification:
2017_07_28-AM-09_15_47
Theory : lattices
Home
Index