Nuprl Lemma : free-dlwc-inc_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:T].
  (free-dlwc-inc(eq;a.Cs[a];x) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))


Proof




Definitions occuring in Statement :  free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) subtype_rel: A ⊆B iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  cand: c∧ B bfalse: ff assert: b fset-antichain: fset-antichain(eq;ac) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] true: True fset-all: fset-all(s;x.P[x]) rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False exists: x:A. B[x]
Lemmas referenced :  free-dlwc-point fset-null_wf fset_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf fset-singleton_wf eqtt_to_assert fset-antichain-singleton fset-antichain_wf fset-all_wf fset-contains-none_wf uiff_transitivity equal-wf-T-base bnot_wf not_wf eqff_to_assert assert_of_bnot empty-fset_wf equal_wf deq_wf fset-all-iff deq-fset_wf member-fset-singleton assert-fset-contains-none fset-member_wf assert_witness assert-fset-null fset-filter-is-empty assert-deq-f-subset
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation cumulativity hypothesisEquality lambdaEquality applyEquality setElimination rename setEquality functionEquality functionExtensionality lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation productEquality equalityTransitivity equalitySymmetry baseClosed independent_functionElimination natural_numberEquality dependent_functionElimination axiomEquality universeEquality hyp_replacement applyLambdaEquality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[x:T].
    (free-dlwc-inc(eq;a.Cs[a];x)  \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))



Date html generated: 2017_10_05-AM-00_36_58
Last ObjectModification: 2017_07_28-AM-09_15_17

Theory : lattices


Home Index