Nuprl Lemma : assert-fset-contains-none

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  uiff(↑fset-contains-none(eq;s;x.Cs[x]);∀x:T. (x ∈  (∀c:fset(T). (c ∈ Cs[x]  c ⊆ s)))))


Proof




Definitions occuring in Statement :  fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: iff: ⇐⇒ Q all: x:A. B[x] not: ¬A false: False rev_implies:  Q exists: x:A. B[x] squash: T
Lemmas referenced :  member-f-union exists_wf squash_wf and_wf deq_wf fset-contains-none_wf uiff_wf assert_witness rev_implies_wf assert-fset-contains-none-of f-subset_wf not_wf fset-member_wf all_wf deq-fset_wf fset_wf f-union_wf fset-contains-none-of_wf assert_wf iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation isect_memberFormation introduction independent_isectElimination lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality independent_functionElimination dependent_functionElimination voidElimination cumulativity because_Cache universeEquality independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_pairFormation imageMemberEquality baseClosed imageElimination allFunctionality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    uiff(\muparrow{}fset-contains-none(eq;s;x.Cs[x]);\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  (\mforall{}c:fset(T).  (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (\mneg{}c  \msubseteq{}  s)))))



Date html generated: 2016_05_14-PM-03_42_21
Last ObjectModification: 2016_01_14-PM-10_41_03

Theory : finite!sets


Home Index