Nuprl Lemma : assert-fset-contains-none
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  uiff(↑fset-contains-none(eq;s;x.Cs[x]);∀x:T. (x ∈ s 
⇒ (∀c:fset(T). (c ∈ Cs[x] 
⇒ (¬c ⊆ s)))))
Proof
Definitions occuring in Statement : 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
Lemmas referenced : 
member-f-union, 
exists_wf, 
squash_wf, 
and_wf, 
deq_wf, 
fset-contains-none_wf, 
uiff_wf, 
assert_witness, 
rev_implies_wf, 
assert-fset-contains-none-of, 
f-subset_wf, 
not_wf, 
fset-member_wf, 
all_wf, 
deq-fset_wf, 
fset_wf, 
f-union_wf, 
fset-contains-none-of_wf, 
assert_wf, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
cumulativity, 
because_Cache, 
universeEquality, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
allFunctionality, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    uiff(\muparrow{}fset-contains-none(eq;s;x.Cs[x]);\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  (\mforall{}c:fset(T).  (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (\mneg{}c  \msubseteq{}  s)))))
Date html generated:
2016_05_14-PM-03_42_21
Last ObjectModification:
2016_01_14-PM-10_41_03
Theory : finite!sets
Home
Index