Nuprl Lemma : assert-fset-contains-none-of

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[cs:fset(fset(T))].
  uiff(↑fset-contains-none-of(eq;s;cs);∀c:fset(T). (c ∈ cs  c ⊆ s)))


Proof




Definitions occuring in Statement :  fset-contains-none-of: fset-contains-none-of(eq;s;cs) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  fset-contains-none-of: fset-contains-none-of(eq;s;cs) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q not: ¬A false: False exists: x:A. B[x] cand: c∧ B rev_uimplies: rev_uimplies(P;Q) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  fset-filter-is-empty deq-fset_wf assert-deq-f-subset fset-member_wf fset_wf assert_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf not_wf exists_wf iff_weakening_uiff equal-wf-T-base uiff_wf fset-null_wf fset-filter_wf assert-fset-null assert_witness fset-contains-none-of_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache cumulativity hypothesisEquality hypothesis independent_pairFormation isect_memberFormation lambdaFormation independent_functionElimination dependent_pairFormation productElimination independent_isectElimination productEquality applyEquality lambdaEquality setElimination rename setEquality functionEquality sqequalRule functionExtensionality voidElimination dependent_functionElimination addLevel instantiate baseClosed universeEquality independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[cs:fset(fset(T))].
    uiff(\muparrow{}fset-contains-none-of(eq;s;cs);\mforall{}c:fset(T).  (c  \mmember{}  cs  {}\mRightarrow{}  (\mneg{}c  \msubseteq{}  s)))



Date html generated: 2017_04_17-AM-09_20_26
Last ObjectModification: 2017_02_27-PM-05_23_34

Theory : finite!sets


Home Index