Nuprl Lemma : fset-contains-none_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[Cs:T ⟶ fset(fset(T))].  (fset-contains-none(eq;s;x.Cs[x]) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fset-contains-none-of_wf f-union_wf fset_wf deq-fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    (fset-contains-none(eq;s;x.Cs[x])  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_42_18
Last ObjectModification: 2015_12_26-PM-06_39_41

Theory : finite!sets


Home Index