Nuprl Lemma : free-dlwc-point
∀[T,eq,Cs:Top].
  (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) ~ {ac:fset(fset(T))| 
                                                              (↑fset-antichain(eq;ac))
                                                              ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} )
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-point: Point(l)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
fset-all: fset-all(s;x.P[x])
, 
fset: fset(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-point: Point(l)
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq,Cs:Top].
    (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) 
    \msim{}  \{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))\}  )
Date html generated:
2016_05_18-AM-11_32_55
Last ObjectModification:
2015_12_28-PM-01_59_03
Theory : lattices
Home
Index