Step * of Lemma free-dlwc-inc_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:T].
  (free-dlwc-inc(eq;a.Cs[a];x) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
BY
(((RWO "free-dlwc-point" THEN Auto) THEN ProveWfLemma) THEN MemTypeCD THEN Auto) }

1
1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. T
5. ↑fset-null({c ∈ Cs[x] deq-f-subset(eq) {x}})
6. ↑fset-antichain(eq;{{x}})
⊢ fset-all({{x}};a.fset-contains-none(eq;a;x.Cs[x]))


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[x:T].
    (free-dlwc-inc(eq;a.Cs[a];x)  \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))


By


Latex:
(((RWO  "free-dlwc-point"  0  THEN  Auto)  THEN  ProveWfLemma)  THEN  MemTypeCD  THEN  Auto)




Home Index