Nuprl Lemma : lattice-extend-dlwc-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)].
  ∀[x:T]. (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x)) (f x) ∈ Point(L)) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) lattice-fset-meet: /\(s) bdd-distributive-lattice: BoundedDistributiveLattice lattice-0: 0 lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False bdd-distributive-lattice: BoundedDistributiveLattice top: Top squash: T true: True empty-fset: {} lattice-fset-join: \/(s) not: ¬A decidable: Dec(P) lattice-fset-meet: /\(s)
Lemmas referenced :  fset-null_wf fset_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf fset-singleton_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fset-member_wf deq-fset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-fset-meet_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq fset-image_wf lattice-0_wf deq_wf bdd-distributive-lattice_wf fset-image-singleton squash_wf true_wf lattice-fset-join-singleton iff_weakening_equal lattice-fset-meet-singleton fset-image-empty reduce_nil_lemma assert-fset-null equal-wf-T-base fset-filter-is-empty not_wf exists_wf assert-deq-f-subset f-subset-singleton lattice-0-equal-lattice-1-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality setElimination rename setEquality functionEquality functionExtensionality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination because_Cache voidElimination isect_memberEquality axiomEquality productEquality universeEquality voidEquality imageElimination natural_numberEquality imageMemberEquality baseClosed impliesFunctionality existsFunctionality independent_pairFormation andLevelFunctionality existsLevelFunctionality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mforall{}[x:T].  (lattice-extend-wc(L;eq;eqL;f;free-dlwc-inc(eq;a.Cs[a];x))  =  (f  x)) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))



Date html generated: 2017_10_05-AM-00_37_18
Last ObjectModification: 2017_07_28-AM-09_15_29

Theory : lattices


Home Index