Nuprl Lemma : f-subset-singleton

[A:Type]. ∀[eq:EqDecider(A)]. ∀[a:A].  ∀x:fset(A). uiff(x ⊆ {a};(x {a} ∈ fset(A)) ∨ (x {} ∈ fset(A)))


Proof




Definitions occuring in Statement :  empty-fset: {} fset-singleton: {x} f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] f-subset: xs ⊆ ys uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: or: P ∨ Q implies:  Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) squash: T true: True subtype_rel: A ⊆B guard: {T} not: ¬A false: False rev_uimplies: rev_uimplies(P;Q) top: Top
Lemmas referenced :  fset-member_wf fset-singleton_wf empty-fset_wf fset-member_witness iff_weakening_uiff equal_wf member-fset-singleton fset_wf deq_wf istype-universe decidable__assert fset-null_wf assert-fset-null fset-extensionality squash_wf true_wf subtype_rel_self iff_weakening_equal decidable__fset-member mem_empty_lemma istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut independent_pairFormation introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality isect_memberEquality_alt isectElimination axiomEquality hypothesis isectIsTypeImplies inhabitedIsType functionIsTypeImplies rename functionIsType because_Cache isectIsType universeIsType extract_by_obid equalityIstype unionElimination unionIsType productElimination independent_functionElimination independent_isectElimination promote_hyp instantiate universeEquality inrFormation_alt equalityIsType1 inlFormation_alt applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_pairEquality hyp_replacement applyLambdaEquality voidElimination Error :memTop

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[a:A].    \mforall{}x:fset(A).  uiff(x  \msubseteq{}  \{a\};(x  =  \{a\})  \mvee{}  (x  =  \{\}))



Date html generated: 2020_05_19-PM-09_52_40
Last ObjectModification: 2020_01_04-PM-08_00_12

Theory : finite!sets


Home Index