Nuprl Lemma : lattice-0-equal-lattice-1-implies

L:BoundedLattice. ((1 0 ∈ Point(L))  (∀x:Point(L). (0 x ∈ Point(L))))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-0: 0 lattice-1: 1 lattice-point: Point(l) all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) and: P ∧ Q uall: [x:A]. B[x] squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bdd-lattice_wf lattice-0_wf lattice-1_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf and_wf bounded-lattice-structure_wf subtype_rel_set le-lattice-1 iff_weakening_equal lattice-structure_wf lattice-point_wf true_wf squash_wf lattice-le_wf lattice-0-le bdd-lattice-subtype-lattice lattice-le-order
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule productElimination equalityTransitivity equalitySymmetry independent_functionElimination isectElimination lambdaEquality imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination instantiate cumulativity setElimination rename

Latex:
\mforall{}L:BoundedLattice.  ((1  =  0)  {}\mRightarrow{}  (\mforall{}x:Point(L).  (0  =  x)))



Date html generated: 2016_05_18-AM-11_23_11
Last ObjectModification: 2016_01_17-PM-00_42_38

Theory : lattices


Home Index