Nuprl Lemma : lattice-0-equal-lattice-1-implies
∀L:BoundedLattice. ((1 = 0 ∈ Point(L)) 
⇒ (∀x:Point(L). (0 = x ∈ Point(L))))
Proof
Definitions occuring in Statement : 
bdd-lattice: BoundedLattice
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
bdd-lattice_wf, 
lattice-0_wf, 
lattice-1_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
and_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
le-lattice-1, 
iff_weakening_equal, 
lattice-structure_wf, 
lattice-point_wf, 
true_wf, 
squash_wf, 
lattice-le_wf, 
lattice-0-le, 
bdd-lattice-subtype-lattice, 
lattice-le-order
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isectElimination, 
lambdaEquality, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
instantiate, 
cumulativity, 
setElimination, 
rename
Latex:
\mforall{}L:BoundedLattice.  ((1  =  0)  {}\mRightarrow{}  (\mforall{}x:Point(L).  (0  =  x)))
Date html generated:
2016_05_18-AM-11_23_11
Last ObjectModification:
2016_01_17-PM-00_42_38
Theory : lattices
Home
Index