Nuprl Lemma : lattice-0-le

[l:BoundedLattice]. ∀[x:Point(l)].  0 ≤ x


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-0: 0 lattice-le: a ≤ b lattice-point: Point(l) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-lattice: BoundedLattice uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a lattice-le: a ≤ b so_lambda: λ2x.t[x] prop: so_apply: x[s] lattice-axioms: lattice-axioms(l) bounded-lattice-axioms: bounded-lattice-axioms(l) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-le-iff bdd-lattice-subtype-lattice lattice-0_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule setElimination rename productElimination independent_isectElimination axiomEquality instantiate lambdaEquality productEquality cumulativity isect_memberEquality because_Cache equalitySymmetry imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    0  \mleq{}  x



Date html generated: 2017_10_05-AM-00_31_18
Last ObjectModification: 2017_07_28-AM-09_13_01

Theory : lattices


Home Index