Nuprl Lemma : lattice-le-iff

[l:Lattice]. ∀[a,b:Point(l)].  uiff(a ≤ b;b a ∨ b ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-join: a ∨ b lattice-point: Point(l) uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lattice-le: a ≤ b lattice: Lattice prop: true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice_properties lattice-le_wf equal_wf lattice-point_wf lattice-join_wf lattice_wf iff_weakening_equal squash_wf true_wf lattice-structure_wf lattice-meet_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesisEquality sqequalHypSubstitution extract_by_obid isectElimination thin hypothesis setElimination rename productElimination sqequalRule axiomEquality because_Cache independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed independent_isectElimination independent_functionElimination universeEquality

Latex:
\mforall{}[l:Lattice].  \mforall{}[a,b:Point(l)].    uiff(a  \mleq{}  b;b  =  a  \mvee{}  b)



Date html generated: 2017_10_05-AM-00_31_00
Last ObjectModification: 2017_07_28-AM-09_12_52

Theory : lattices


Home Index